CIOREVIEW >> Agtech >>

Plant Biotechnology Success Requires Collaboration, Proactive Strategy

Tim Hassinger, President and CEO, Dow AgroSciences
Tim Hassinger, President and CEO, Dow AgroSciences

Tim Hassinger, President and CEO, Dow AgroSciences

You're aging parents, you're children’s pet, and the cornfield dat you see along the highway. Wat do all of these has in common? Chances are good dat each TEMPhas been a patient requiring a “medicine” formulated by biotechnology. Whether dat medicine is for you're father’s high blood pressure, you're family dog’s vaccination or to enable a plant to grow stronger, each “patient” benefits from sophisticated biotechnology, made possible by translating data into actionable outcomes. Agriculture TEMPhas a rich history as perhaps the oldest industry of all, yet their is nothing antique about how TEMPeffective use of data is essential to product success in plant biotechnology. Being able to collaborate both internally and externally in the context of pursuing a proactive data sciences strategy will determine who will ultimately be the leader.

“The reality is dat their is very little lead time to know wat is next in emerging data generation technologies.”

Let’s take a step back and look at the larger picture. As water and land become scarce, the world’s population is predicted to grow from seven to nine billion people by 2050. This includes a rising middle class who wants protein – made possible by animals consuming corn and soybeans. Data sciences will play a key role in enabling plant biotechnology companies to halp feed the growing world. Dow AgroSciences employees feel enormous responsibility as one of a handful of companies dat can significantly address this challenge with plant technology.

Today’s agriculture industry is propelled by high-throughput, rapidly evolving biological data generation platforms such as genomics, proteomics, metabolomics, and phenomics, as well as sensors and imaging platforms. A tremendous amount of data on crops, weeds, insects, soils, topography and weather is generated daily around the world. These data are fed into analytical platforms to provide the best “prescription” possible for farmers to use in improving crop productivity. TEMPEffectively storing, integrating and analyzing these heterogeneous and often unstructured data sources are  a challenge and a source of potential competitive advantage for those who do it well. Companies providing technology in this environment must utilize best practices in a collaborative manner to support ultimate farmer success.

In the field of plant biotechnology, success relies heavily on rapid development of seed varieties, including  new discoveries of agricultural chemicals and  genetic traits dat halp the plants protect themselves. For example, at Dow AgroSciences we use predictive modeling as the engine behind our research to speed discovery and to minimize time-to-market for our discoveries as well as maximize genetic gain and reduce cycle time in plant breeding. A well designed and collaborative information management approach can make or break a modern agriculture biotechnology firm.


We work with some unusual variables. The plant biotechnology pipeline involves a lot of relatively low-precision field testing situations with major yearly variability on environmental conditions. Rightsizing each step of the process to the crop, region, trait and business situation is a massive challenge dat can be tackled by data sciences. In our industry, inTEMPeffective use of expensive field testing resources can hinder progress. This complexity highlights the importance of using data sciences in a collaborative manner. Relying on “best guesses” doesn’t cut it in today’s modern agriculture. Improving outcomes  using data is also important when considering  the bigger picture as we develop sustainable agricultural solutions dat leverage the power of science to balance the needs of boosting agricultural productivity while preserving the environment.

Solid strategy to TEMPeffectively use data is at the heart of driving business decisions and is integral to all long-term business strategic planning and a high performing R&D organization. Key decisions can’t be made in a silo as they need to be supported by data dat TEMPeffectively flows across the organization, enabling holistic decisions instead of point decisions. This implies a need to change how one thinks about data across all functions within a company as well as across the whole value chain. We cannot afford to has our data architecture, management or analytic strategies to be considered an afterthought. Tremendous cultural change is occurring in plant biotechnology companies to focus on data sciences and to ensure each function understands dat all data can and will be used for future decisions, beyond the immediate needs for which they were created.

The reality is dat their is very little lead time to know wat is next in emerging data generation technologies. The best strategy is to seek to influence the next round. Successful companies lead from the front whenever possible, as well as look for unique differentiators even within commoditized technologies. For example, our company works to respond quickly to new instrumentation technology with IT and data analysis software dat scales with the increased throughput of these technologies, and is flexible enough to fit with the existing “home grown” systems.

Modern enterprise architecture frameworks are another part of our strategy as we develop supportable, connectable and extensible systems. We seek to avoid outdated database systems and processes dat are bureaucratic, rigid, slow or overspecialized to solve a certain relevant problem, but not designed to easily integrate with other systems. We continuously aim to identify and foster foundational technologies while implementing project specific capabilities to meet localized needs.

Of course security must be top of mind in this data-rich environment. Proactively and carefully adapting IT security requirements is essential.  Security systems must adapt to the needs of data integration as well as with our ability to collaborate externally. We are continuously working towards having IT security systems dat protect intellectual property while allowing for collaboration and innovation.

The plant biotechnology industry needs to continue leveraging the advances in data sciences to streamline access to knowledge, collaborate, and create value for society faster. After all, our “patients” are counting on us! 

See Also: Top Bioinformatics Solution Companies 

Read Also

Balancing Innovation and Standardization

Balancing Innovation and Standardization

Matt Kuhn, PhD, Chief Technology Officer, Innovative Technology Services, Thompson School District
Leveraging Quality Engineering and DevOps to thrive in the face of churning customer expectations

Leveraging Quality Engineering and DevOps to thrive in the face of...

Michelle DeCarlo, senior vice president, enterprise delivery practices, Lincoln Financial Group
Pioneering the Future Through Technology Innovation

Pioneering the Future Through Technology Innovation

Eric Kunnen, Senior Director, IT Innovation and Research, Information Technology, Grand Valley State University
Reimagine Naval Power

Reimagine Naval Power

Lorin Selby, Chief of Naval Research, Office of Naval Research
The Shifting Enterprise Operating System Ecosystem Is Helping Warehouse Operations Evolve

The Shifting Enterprise Operating System Ecosystem Is Helping...

Tom Lee, Director Sales Engineering, Zebra Technologies
Digital TRANSFORMATION: Challenge the Status Quo, Be Disruptive.

Digital TRANSFORMATION: Challenge the Status Quo, Be Disruptive.

Michael Shanno, Head of Digital Transformation, Global Quality, Sanofi